

WEST BENGAL STATE UNIVERSITY

B.Sc. Honours 3rd Semester Examination, 2022-23

CEMACOR06T-CHEMISTRY (CC6)

Time Allotted: 2 Hours The figures in the margin indicate full marks. Full Marks: 40

Answer any three questions taking one from each unit

UNIT-I

UNII-I			
,	(-)	Justify or criticise the following statements:	$2\times3=6$
1.	(a)	(i) From the radius ratio $(r_+/r = 0.76)$, RBBr can adopt the CSCI structure of in practice it crystallises in the NaCl structure. A similar situation arises for	
		(ii) From the radius ratio, NH_4F is expected to crystallise in the NaCl structures.	
		(iii) The lattice energies of silver halides are almost the same as that of alkan	•
		The dipole moment of KCl is 3.336×10^{-29} cm. The distance between K ⁺ and Cl ion is 2.6×10^{-10} m. Calculate the % of ionic character of KCl [$a = 1.60 \times 10^{-19}$ coulomb].	2
		The dipole moment of NH ₃ is 1.49 D but that of BF ₃ is zero — Why?	2
	(c)	The dipole moment of $Tary$ and $Tary$ are Calculate the heat of formation (ΔH_f) of MgF ₂ from its elements using Born-	2
	(d)		
		Haber cycle. Sublimation energy of Magnesium, (S) = 146.4 kJ mol ⁻¹ .	
		$\cdot \cdot \cdot \cdot \cdot \cdot = c \cdot F \cdot (D) = 158.9 \text{ kJ mol}^{\prime} \cdot \cdot$	
		Larication energy of $Mg(g)$, $I(Mg^{2}) = 2184.0$ kJ mor .	
		F_{Latter} of finity for $F(g) = -334.7 \text{ kJ mol}$.	
		$_{\text{constant}}$ of MgF ₂ (U ₀) = -2922.3 kJ mol .	2
	(e)	Write down the resonating structure of SCN ion indicating the formal charges on each atom. Indicate which structure is most contributing and why?	
		Using VSEPR theory, predict the shape of SOF ₄ . Indicate the state of Using view of the central atom.	2
		hubridisation of the community	2
2	(a`	Predict the shapes and indicate the state of hybridisation of the central atom for	3
4	. (4,	the following.	
		(i) XeOF ₄	
		(ii) I ₅ (iii) PCl ₃ Br ₂ .	_
		Tu	ırn Over

CBCS/B.Sc./Hons./3rd Sem./CEMACOR06T/2022-23

(b) Calculate the lattice energy of Mg(ClO₄)₂ using Kapustinskii equation. Radii of Mg²⁺ and ClO⁴⁻ ions are 86 pm and 226 pm respectively.

3

 $K = 1.214 \times 10^5 \text{ pm.mol}^{-1}$.

(c) (SiH₃)₃N and (CH₃)₃N react with HCl to give different products — Explain.

3

(d) Solubility trend of fluorides of alkali metals in water are

3

CsF > RbF > KF > NaF > LiF.

But this trends is reverse for iodides. Explain.

(e) K⁺ and F⁻ have comparable sizes. Which one has the greater hydration energy and why?

2

(f) Give reasons why:

(i) BaSO₄ is insoluble in water.

2

(ii) Melting point of BaO is high.

UNIT-II

3. (a) Rationalize the bond lengths of CO (1.128 Å) and CO⁺ (1.115 Å) with the help of MO diagram. Explain the ligating behaviour of CO. Explain why the dipole moment of CO is exceedingly small with the help of MO diagram.

3+1+2

(b) What are the expected changes in bond order and bond distance that accompany the following ionisation processes?

3

- (i) $N_2 \longrightarrow N_2^+ + e^-$
- (ii) $NO + e \longrightarrow NO^-$
- (c) Why are glass apparatus dried by cleaning with alcohol or acetone? Which one is more effective and why?

2+1

(d) Which type of defects occurs when NiO is heated at 1500 K with excess of O2 and the colour turns to black?

2

(e) Explain the effect of temperature on the variation of conduction of metal and semiconductors.

4+1

2

4. (a) Construct the M.O energy level diagram for CO₂. Calculate the bond order from

(b) Between H₂O and H₂O₂ which one has higher boiling point and why?

2

(c) From the view point of qualitative M.O. description indicate which of the given molecules are expected to be stabilized by:

2+2

- (i) Addition of an electron, (ii) Removal of an electron.
- (A) NO
- (B) C₂
- (C) CN and

(D) O₂

(d) Explain the following variation of colour in the diatomic halogens from the view point of HOMO/LUMO concept.

3

F₂ (pale yellow), Cl₂ (greenish yellow), Br₂ (reddish brown) and I₂ (violet)

(e) Explain the fact that in B₂H₆, all hydrogens are not identical.

2

CBCS/B.Sc./Hons./3rd Sem./CEMACOR06T/2022-23

UNIT-III

- 5. (a) Is the ${}_8{\rm O}^{16}$ isotope chemically identical with the ${}_8{\rm O}^{18}$ isotope? Discuss.
 - (b) Predict the mode of decay of the following nuclei:
 - $_6C^{13}$ and $_{15}P^{30}$. (c) Calculate the binding energy per nucleon of the $_{18}Ar^{40}$ nucleus. The experimental mass of $_{18}Ar^{40}$ is 39.962384 u. $M_H = 1.007825$ u; $M_n = 1.008665$ u.

3

1

3

2

6. (a) Considering the following reaction profile how you would establish that entire oxygen is evolved from either PbO₂ or from H₂O₂?

$$PbO_2 + H_2O_2 \longrightarrow PbO + H_2O + O_2$$

- (b) ⁹₄Be is stable but ⁹₅B is unstable Why?
- (c) An Uranium mineral contains 15 g of lead (²⁰⁶Pb) for each 100 g of Uranium (²³⁸U) present. What is the age of the mineral?

$$[t_{1/2} \text{ of }^{238} \text{U} = 4.2 \times 10^9 \text{ years}]$$

(d) Complete and then interpret the following nuclear reactions given below:

$$^{10}_{5}B + {^{4}_{2}He} \longrightarrow {^{13}_{7}N^{*}} + {^{3}_{5}}$$

____×___